Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Parasit Vectors ; 17(1): 106, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439081

ABSTRACT

BACKGROUND: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases. Developing an accessible genotyping platform is essential in advancing biological control methods and understanding the population dynamics of this pest species, with significant implications for public health. METHODS: We designed a SNP chip for Ae. albopictus (Aealbo chip) based on approximately 2.7 million SNPs identified using WGS data from 819 worldwide samples. We validated the chip using laboratory single-pair crosses, comparing technical replicates, and comparing genotypes of samples genotyped by WGS and the SNP chip. We then used the chip for a population genomic analysis of 237 samples from 28 sites in the native range to evaluate its usefulness in describing patterns of genomic variation and tracing the origins of invasions. RESULTS: Probes on the Aealbo chip targeted 175,396 SNPs in coding and non-coding regions across all three chromosomes, with a density of 102 SNPs per 1 Mb window, and at least one SNP in each of the 17,461 protein-coding genes. Overall, 70% of the probes captured the genetic variation. Segregation analysis found that 98% of the SNPs followed expectations of single-copy Mendelian genes. Comparisons with WGS indicated that sites with genotype disagreements were mostly heterozygotes at loci with WGS read depth < 20, while there was near complete agreement with WGS read depths > 20, indicating that the chip more accurately detects heterozygotes than low-coverage WGS. Sample sizes did not affect the accuracy of the SNP chip genotype calls. Ancestry analyses identified four to five genetic clusters in the native range with various levels of admixture. CONCLUSIONS: The Aealbo chip is highly accurate, is concordant with genotypes from WGS with high sequence coverage, and may be more accurate than low-coverage WGS.


Subject(s)
Aedes , Mosquito Vectors , Humans , Animals , Genotype , Mosquito Vectors/genetics , Heterozygote , Aedes/genetics
2.
Ecol Evol ; 13(12): e10819, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38089896

ABSTRACT

Impact of climate change is expected to be especially noticeable at the edges of a species' distribution, where they meet suboptimal habitat conditions. In Mauritania and Iberia, two genetically differentiated populations of harbor porpoises (Phocoena phocoena) form an ecotype adapted to local upwelling conditions and distinct from other ecotypes further north on the NE Atlantic continental shelf and in the Black Sea. By analyzing the evolution of mitochondrial genetic variation in the Iberian population between two temporal cohorts (1990-2002 vs. 2012-2015), we report a substantial decrease in genetic diversity. Phylogenetic analyses including neighboring populations identified two porpoises in southern Iberia carrying a divergent haplotype closely related to those from the Mauritanian population, yet forming a distinct lineage. This suggests that Iberian porpoises may not be as isolated as previously thought, indicating possible dispersion from Mauritania or an unknown population in between, but none from the northern ecotype. Demo-genetic scenario testing by approximate Bayesian computation showed that the rapid decline in the Iberian mitochondrial diversity was not simply due to the genetic drift of a small population, but models support instead a substantial decline in effective population size, possibly resulting from environmental stochasticity, prey depletion, or acute fishery bycatches. These results illustrate the value of genetics time series to inform demographic trends and emphasize the urgent need for conservation measures to ensure the viability of this small harbor porpoise population in Iberian waters.

3.
Mol Ecol ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37577945

ABSTRACT

Right whales (genus Eubalaena) were among the first, and most extensively pursued, targets of commercial whaling. However, understanding the impacts of this persecution requires knowledge of the demographic histories of these species prior to exploitation. We used deep whole genome sequencing (~40×) of 12 North Atlantic (E. glacialis) and 10 Southwest Atlantic southern (E. australis) right whales to quantify contemporary levels of genetic diversity and infer their demographic histories over time. Using coalescent- and identity-by-descent-based modelling to estimate ancestral effective population sizes from genomic data, we demonstrate that North Atlantic right whales have lived with smaller effective population sizes (Ne ) than southern right whales in the Southwest Atlantic since their divergence and describe the decline in both populations around the time of whaling. North Atlantic right whales exhibit reduced genetic diversity and longer runs of homozygosity leading to higher inbreeding coefficients compared to the sampled population of southern right whales. This study represents the first comprehensive assessment of genome-wide diversity of right whales in the western Atlantic and underscores the benefits of high coverage, genome-wide datasets to help resolve long-standing questions about how historical changes in effective population size over different time scales shape contemporary diversity estimates. This knowledge is crucial to improve our understanding of the right whales' history and inform our approaches to address contemporary conservation issues. Understanding and quantifying the cumulative impact of long-term small Ne , low levels of diversity and recent inbreeding on North Atlantic right whale recovery will be important next steps.

4.
Nat Commun ; 14(1): 4020, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463880

ABSTRACT

Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.


Subject(s)
Bottle-Nosed Dolphin , Genetics, Population , Animals , Genomics , Paleontology , Bottle-Nosed Dolphin/genetics , Ecosystem
5.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37030000

ABSTRACT

Plasmodium falciparum, the most virulent agent of human malaria, spread from Africa to all continents following the out-of-Africa human migrations. During the transatlantic slave trade between the 16th and 19th centuries, it was introduced twice independently to the Americas where it adapted to new environmental conditions (new human populations and mosquito species). Here, we analyzed the genome-wide polymorphisms of 2,635 isolates across the current P. falciparum distribution range in Africa, Asia, Oceania, and the Americas to investigate its genetic structure, invasion history, and selective pressures associated with its adaptation to the American environment. We confirmed that American populations originated from Africa with at least two independent introductions that led to two genetically distinct clusters, one in the North (Haiti and Colombia) and one in the South (French Guiana and Brazil), and an admixed Peruvian group. Genome scans revealed recent and more ancient signals of positive selection in the American populations. Particularly, we detected positive selection signals in genes involved in interactions with hosts (human and mosquito) cells and in genes involved in resistance to malaria drugs in both clusters. Analyses suggested that for five genes, adaptive introgression between clusters or selection on standing variation was at the origin of this repeated evolution. This study provides new genetic evidence on P. falciparum colonization history and on its local adaptation in the Americas.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Animals , Plasmodium falciparum/genetics , Metagenomics , Malaria, Falciparum/genetics , Americas , Polymorphism, Genetic
7.
Proc Natl Acad Sci U S A ; 120(11): e2219835120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36881629

ABSTRACT

Species distributed across heterogeneous environments often evolve locally adapted ecotypes, but understanding of the genetic mechanisms involved in their formation and maintenance in the face of gene flow is incomplete. In Burkina Faso, the major African malaria mosquito Anopheles funestus comprises two strictly sympatric and morphologically indistinguishable yet karyotypically differentiated forms reported to differ in ecology and behavior. However, knowledge of the genetic basis and environmental determinants of An. funestus diversification was impeded by lack of modern genomic resources. Here, we applied deep whole-genome sequencing and analysis to test the hypothesis that these two forms are ecotypes differentially adapted to breeding in natural swamps versus irrigated rice fields. We demonstrate genome-wide differentiation despite extensive microsympatry, synchronicity, and ongoing hybridization. Demographic inference supports a split only ~1,300 y ago, closely following the massive expansion of domesticated African rice cultivation ~1,850 y ago. Regions of highest divergence, concentrated in chromosomal inversions, were under selection during lineage splitting, consistent with local adaptation. The origin of nearly all variations implicated in adaptation, including chromosomal inversions, substantially predates the ecotype split, suggesting that rapid adaptation was fueled mainly by standing genetic variation. Sharp inversion frequency differences likely facilitated adaptive divergence between ecotypes by suppressing recombination between opposing chromosomal orientations of the two ecotypes, while permitting free recombination within the structurally monomorphic rice ecotype. Our results align with growing evidence from diverse taxa that rapid ecological diversification can arise from evolutionarily old structural genetic variants that modify genetic recombination.


Subject(s)
Anopheles , Malaria , Oryza , Animals , Chromosome Inversion , Ecotype , Plant Breeding , Anopheles/genetics , Oryza/genetics
8.
Mol Ecol ; 32(23): 6644-6658, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36125236

ABSTRACT

The microbial community composition is crucial for diverse life-history traits in many organisms. However, we still lack a sufficient understanding of how the host microbiome is acquired and maintained, a pressing issue in times of global environmental change. Here we investigated to what extent host genotype, environmental conditions, and the endosymbiont Wolbachia influence the bacterial communities in the parasitic wasp Asobara japonica. We sampled multiple wasp populations across 10 locations in their natural distribution range in Japan and sequenced the host genome (whole genome sequencing) and microbiome (16S rRNA gene). We compared the host population structure and bacterial community composition of wasps that reproduce sexually and are uninfected with Wolbachia with wasps that reproduce asexually and carry Wolbachia. The bacterial communities in asexual wasps were highly similar due to a strong effect of Wolbachia rather than host genomic structure. In contrast, in sexual wasps, bacterial communities appear primarily shaped by a combination of population structure and environmental conditions. Our research highlights that multiple factors shape the bacterial communities of an organism and that the presence of a single endosymbiont can strongly alter their compositions. This information is crucial to understanding how organisms and their associated microbiome will react in the face of environmental change.


Subject(s)
Microbiota , Wasps , Wolbachia , Animals , Wasps/genetics , Wasps/microbiology , Wolbachia/genetics , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Bacteria/genetics , Geography
9.
Science ; 376(6593): 635-639, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35511971

ABSTRACT

In cases of severe wildlife population decline, a key question is whether recovery efforts will be impeded by genetic factors, such as inbreeding depression. Decades of excess mortality from gillnet fishing have driven Mexico's vaquita porpoise (Phocoena sinus) to ~10 remaining individuals. We analyzed whole-genome sequences from 20 vaquitas and integrated genomic and demographic information into stochastic, individual-based simulations to quantify the species' recovery potential. Our analysis suggests that the vaquita's historical rarity has resulted in a low burden of segregating deleterious variation, reducing the risk of inbreeding depression. Similarly, genome-informed simulations suggest that the vaquita can recover if bycatch mortality is immediately halted. This study provides hope for vaquitas and other naturally rare endangered species and highlights the utility of genomics in predicting extinction risk.


Subject(s)
Inbreeding Depression , Phocoena , Animals , Conservation of Natural Resources , Endangered Species , Genetic Variation , Genome , Inbreeding , Phocoena/genetics
10.
Malar J ; 21(1): 141, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35505431

ABSTRACT

Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmodium. Plasmodium vivax is the most prevalent human-infecting species in the Americas. However, the origins of this parasite in this continent are still debated. Similarly, it is now accepted that the existence of Plasmodium simium is explained by a P. vivax transfer from humans to monkey in America. However, many uncertainties still exist concerning the origin of the transfer and whether several transfers occurred. In this review, the most recent studies that addressed these questions using genetic and genomic approaches are presented.


Subject(s)
Malaria , Plasmodium , Biological Evolution , Genome , Humans , Malaria/parasitology , Plasmodium/genetics , Plasmodium vivax/genetics
11.
Mol Ecol ; 31(7): 2124-2139, 2022 04.
Article in English | MEDLINE | ID: mdl-35106871

ABSTRACT

Present-day ecology and population structure are the legacies of past climate and habitat perturbations, and this is particularly true for species that are widely distributed at high latitudes. The red knot, Calidris canutus, is an arctic-breeding, long-distance migratory shorebird with six recognized subspecies defined by differences in morphology, migration behavior, and annual cycle phenology, in a global distribution thought to have arisen just since the last glacial maximum (LGM). We used nextRAD sequencing of 10,881 single-nucleotide polymorphisms (SNPs) to assess the neutral genetic structure and phylogeographic history of 172 red knots representing all known global breeding populations. Using population genetics approaches, including model-based scenario-testing in an approximate Bayesian computation (ABC) framework, we infer that red knots derive from two main lineages that diverged ca. 34,000 years ago, and thus most probably persisted at the LGM in both Palearctic and Nearctic refugia, followed by at least two instances of secondary contact and admixture. Within two Beringian subspecies (C. c. roselaari and rogersi), we detected previously unknown genetic structure among sub-populations sharing a migratory flyway, reflecting additional complexity in the phylogeographic history of the region. Conversely, we found very weak genetic differentiation between two Nearctic populations (rufa and islandica) with clearly divergent migratory phenotypes and little or no apparent contact throughout the annual cycle. Together, these results suggest that relative gene flow among migratory populations reflects a complex interplay of historical, geographical, and ecological factors.


Subject(s)
Charadriiformes , Refugium , Animals , Bayes Theorem , Genetic Variation , Genetics, Population , Phylogeography
12.
Sci Adv ; 7(44): eabg1245, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34705499

ABSTRACT

Studying repeated adaptation can provide insights into the mechanisms allowing species to adapt to novel environments. Here, we investigate repeated evolution driven by habitat specialization in the common bottlenose dolphin. Parapatric pelagic and coastal ecotypes of common bottlenose dolphins have repeatedly formed across the oceans. Analyzing whole genomes of 57 individuals, we find that ecotype evolution involved a complex reticulated evolutionary history. We find parallel linked selection acted upon ancient alleles in geographically distant coastal populations, which were present as standing genetic variation in the pelagic populations. Candidate loci evolving under parallel linked selection were found in ancient tracts, suggesting recurrent bouts of selection through time. Therefore, despite the constraints of small effective population size and long generation time on the efficacy of selection, repeated adaptation in long-lived social species can be driven by a combination of ecological opportunities and selection acting on ancestral standing genetic variation.

13.
Ecol Evol ; 11(18): 12485-12496, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34594514

ABSTRACT

Intraspecific niche differentiation can contribute to population persistence in changing environments. Following declines in large predatory fish, eutrophication, and climate change, there has been a major increase in the abundance of threespine stickleback (Gasterosteus aculeatus) in the Baltic Sea. Two morphotype groups with different levels of body armor-completely plated and incompletely plated-are common in coastal Baltic Sea habitats. The morphotypes are similar in shape, size, and other morphological characteristics and live as one apparently intermixed population. Variation in resource use between the groups could indicate a degree of niche segregation that could aid population persistence in the face of further environmental change. To assess whether morphotypes exhibit niche segregation associated with resource and/or habitat exploitation and predator avoidance, we conducted a field survey of stickleback morphotypes, and biotic and abiotic ecosystem structure, in two habitat types within shallow coastal bays in the Baltic Sea: deeper central waters and shallow near-shore waters. In the deeper waters, the proportion of completely plated stickleback was greater in habitats with greater biomass of two piscivorous fish: perch (Perca fluviatilis) and pike (Esox lucius). In the shallow waters, the proportion of completely plated stickleback was greater in habitats with greater coverage of habitat-forming vegetation. Our results suggest niche segregation between morphotypes, which may contribute to the continued success of stickleback in coastal Baltic Sea habitats.

14.
Evol Appl ; 14(6): 1588-1611, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34178106

ABSTRACT

Understanding species responses to past environmental changes can help forecast how they will cope with ongoing climate changes. Harbor porpoises are widely distributed in the North Atlantic and were deeply impacted by the Pleistocene changes with the split of three subspecies. Despite major impacts of fisheries on natural populations, little is known about population connectivity and dispersal, how they reacted to the Pleistocene changes, and how they will evolve in the future. Here, we used phylogenetics, population genetics, and predictive habitat modeling to investigate population structure and phylogeographic history of the North Atlantic porpoises. A total of 925 porpoises were characterized at 10 microsatellite loci and one quarter of the mitogenome (mtDNA). A highly divergent mtDNA lineage was uncovered in one porpoise off Western Greenland, suggesting that a cryptic group may occur and could belong to a recently discovered mesopelagic ecotype off Greenland. Aside from it and the southern subspecies, spatial genetic variation showed that porpoises from both sides of the North Atlantic form a continuous system belonging to the same subspecies (Phocoena phocoena phocoena). Yet, we identified important departures from random mating and restricted dispersal forming a highly significant isolation by distance (IBD) at both mtDNA and nuclear markers. A ten times stronger IBD at mtDNA compared with nuclear loci supported previous evidence of female philopatry. Together with the lack of spatial trends in genetic diversity, this IBD suggests that migration-drift equilibrium has been reached, erasing any genetic signal of a leading-edge effect that accompanied the predicted recolonization of the northern habitats freed from Pleistocene ice. These results illuminate the processes shaping porpoise population structure and provide a framework for designing conservation strategies and forecasting future population evolution.

15.
Sci Adv ; 7(18)2021 04.
Article in English | MEDLINE | ID: mdl-33910900

ABSTRACT

Plasmodium vivax is the most common and widespread human malaria parasite. It was recently proposed that P. vivax originates from sub-Saharan Africa based on the circulation of its closest genetic relatives (P. vivax-like) among African great apes. However, the limited number of genetic markers and samples investigated questions the robustness of this hypothesis. Here, we extensively characterized the genomic variations of 447 human P. vivax strains and 19 ape P. vivax-like strains collected worldwide. Phylogenetic relationships between human and ape Plasmodium strains revealed that P. vivax is a sister clade of P. vivax-like, not included within the radiation of P. vivax-like By investigating various aspects of P. vivax genetic variation, we identified several notable geographical patterns in summary statistics in function of the increasing geographic distance from Southeast Asia, suggesting that P. vivax may have derived from a single area in Asia through serial founder effects.

16.
Curr Biol ; 31(10): 2155-2166.e4, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33770491

ABSTRACT

Europe is the historical cradle of viticulture, but grapevines (Vitis vinifera) have been increasingly threatened by pathogens of American origin. The invasive oomycete Plasmopara viticola causes downy mildew, one of the most devastating grapevine diseases worldwide. Despite major economic consequences, its invasion history remains poorly understood. We analyzed a comprehensive dataset of ∼2,000 samples, collected from the most important wine-producing countries, using nuclear and mitochondrial gene sequences and microsatellite markers. Population genetic analyses revealed very low genetic diversity in invasive downy mildew populations worldwide and little evidence of admixture. All the invasive populations originated from only one of the five native North American lineages, the one parasitizing wild summer grape (V. aestivalis). An approximate Bayesian computation-random forest approach allowed inferring the worldwide invasion scenario of P. viticola. After an initial introduction into Europe, invasive European populations served as a secondary source of introduction into vineyards worldwide, including China, South Africa, and twice independently, Australia. Only the invasion of Argentina probably represents a tertiary introduction, from Australia. Our findings provide a striking example of a global pathogen invasion resulting from secondary dispersal of a successful invasive population. Our study will also help designing quarantine regulations and efficient breeding for resistance against grapevine downy mildew.


Subject(s)
Oomycetes , Plant Diseases/microbiology , Vitis , Bayes Theorem , Disease Resistance , Europe , Genetics, Population , Microsatellite Repeats , Oomycetes/genetics , Oomycetes/pathogenicity , Vitis/microbiology
17.
Mol Ecol ; 30(6): 1457-1476, 2021 03.
Article in English | MEDLINE | ID: mdl-33544423

ABSTRACT

Harbor porpoise in the North Pacific are found in coastal waters from southern California to Japan, but population structure is poorly known outside of a few local areas. We used multiplexed amplicon sequencing of 292 loci and genotyped clusters of single nucleotide polymoirphisms as microhaplotypes (N = 271 samples) in addition to mitochondrial (mtDNA) sequence data (N = 413 samples) to examine the genetic structure from samples collected along the Pacific coast and inland waterways from California to southern British Columbia. We confirmed an overall pattern of strong isolation-by-distance, suggesting that individual dispersal is restricted. We also found evidence of regions where genetic differences are larger than expected based on geographical distance alone, implying current or historical barriers to gene flow. In particular, the southernmost population in California is genetically distinct (FST  = 0.02 [microhaplotypes]; 0.31 [mtDNA]), with both reduced genetic variability and high frequency of an otherwise rare mtDNA haplotype. At the northern end of our study range, we found significant genetic differentiation of samples from the Strait of Georgia, previously identified as a potential biogeographical boundary or secondary contact zone between harbor porpoise populations. Association of microhaplotypes with remotely sensed environmental variables indicated potential local adaptation, especially at the southern end of the species' range. These results inform conservation and management for this nearshore species, illustrate the value of genomic methods for detecting patterns of genetic structure within a continuously distributed marine species, and highlight the power of microhaplotype genotyping for detecting genetic structure in harbor porpoises despite reliance on poor-quality samples.


Subject(s)
Phocoena , Animals , British Columbia , DNA, Mitochondrial/genetics , Gene Flow , Genetic Variation , Genetics, Population , Georgia , Japan , Phocoena/genetics
18.
Proc Natl Acad Sci U S A ; 117(50): 31583-31590, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33262284

ABSTRACT

Advances in genomics have led to an appreciation that introgression is common, but its evolutionary consequences are poorly understood. In recent species radiations the sharing of genetic variation across porous species boundaries can facilitate adaptation to new environments and generate novel phenotypes, which may contribute to further diversification. Most Anopheles mosquito species that are of major importance as human malaria vectors have evolved within recent and rapid radiations of largely nonvector species. Here, we focus on one of the most medically important yet understudied anopheline radiations, the Afrotropical Anopheles funestus complex (AFC), to investigate the role of introgression in its diversification and the possible link between introgression and vector potential. The AFC comprises at least seven morphologically similar species, yet only An. funestus sensu stricto is a highly efficient malaria vector with a pan-African distribution. Based on de novo genome assemblies and additional whole-genome resequencing, we use phylogenomic and population genomic analyses to establish species relationships. We show that extensive interspecific gene flow involving multiple species pairs has shaped the evolutionary history of the AFC since its diversification. The most recent introgression event involved a massive and asymmetrical movement of genes from a distantly related AFC lineage into An. funestus, an event that predated and plausibly facilitated its subsequent dramatic geographic range expansion across most of tropical Africa. We propose that introgression may be a common mechanism facilitating adaptation to new environments and enhancing vectorial capacity in Anopheles mosquitoes.


Subject(s)
Anopheles/genetics , Gene Flow , Genetic Introgression , Malaria/transmission , Mosquito Vectors/genetics , Adaptation, Physiological/genetics , Africa , Animal Distribution , Animals , Anopheles/parasitology , Genome, Insect/genetics , Geography , Humans , Malaria/parasitology , Mosquito Vectors/parasitology , Phylogeny
19.
Sci Rep ; 10(1): 15190, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938978

ABSTRACT

Historical variation in food resources is expected to be a major driver of cetacean evolution, especially for the smallest species like porpoises. Despite major conservation issues among porpoise species (e.g., vaquita and finless), their evolutionary history remains understudied. Here, we reconstructed their evolutionary history across the speciation continuum. Phylogenetic analyses of 63 mitochondrial genomes suggest that porpoises radiated during the deep environmental changes of the Pliocene. However, all intra-specific subdivisions were shaped during the Quaternary glaciations. We observed analogous evolutionary patterns in both hemispheres associated with convergent evolution to coastal versus oceanic environments. This suggests that similar mechanisms are driving species diversification in northern (harbor and Dall's) and southern species (spectacled and Burmeister's). In contrast to previous studies, spectacled and Burmeister's porpoises shared a more recent common ancestor than with the vaquita that diverged from southern species during the Pliocene. The low genetic diversity observed in the vaquita carried signatures of a very low population size since the last 5,000 years. Cryptic lineages within Dall's, spectacled and Pacific harbor porpoises suggest a richer evolutionary history than previously suspected. These results provide a new perspective on the mechanisms driving diversification in porpoises and an evolutionary framework for their conservation.


Subject(s)
Biological Evolution , Genome, Mitochondrial/genetics , Genomics/methods , Mitochondria/genetics , Porpoises/physiology , Animals , Biodiversity , Ecosystem , Evolution, Molecular , Genetic Speciation , Phylogeny , Species Specificity
20.
Viruses ; 12(3)2020 03 06.
Article in English | MEDLINE | ID: mdl-32155887

ABSTRACT

An innovative approach was tested to treat cat allergy in humans by vaccinating cats with Fel-CuMV (HypoCatTM), a vaccine against the major cat allergen Fel d 1 based on virus-like particles derived from cucumber mosaic virus (CuMV-VLPs). Upon vaccination, cats develop neutralizing antibodies against the allergen Fel d 1, which reduces the level of reactive allergen, thus lowering the symptoms or even preventing allergic reactions in humans. The combined methodological field study included ten cat-allergic participants who lived together with their cats (n = 13), that were immunized with Fel-CuMV. The aim was to determine methods for measuring a change in allergic symptoms. A home-based provocation test (petting time and organ specific symptom score (OSSS)) and a general weekly (or monthly) symptom score (G(W)SS) were used to assess changes in allergic symptoms. The petting time until a pre-defined level of allergic symptoms was reached increased already early after vaccination of the cats and was apparent over the course of the study. In addition, the OSSS after provocation and G(W)SS recorded a persistent reduction in symptoms over the study period and could serve for long-term assessment. Hence, the immunization of cats with HypoCatTM (Fel-CuMV) may have a positive impact on the cat allergy of the owner, and changes could be assessed by the provocation test as well as G(W)SS.


Subject(s)
Allergens/immunology , Glycoproteins/immunology , Hypersensitivity/diagnosis , Hypersensitivity/etiology , Immunization , Adolescent , Adult , Aged , Animals , Cats , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Vaccination , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...